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A ship’s waves and its wake 

By D. H. PEREGRINE 
School of Mathematics, University of Bristol 

(Received 28 April 1970 and in revised form 24 February 1971) 

Waves generated at the stern of a ship must travel through the ship’s wake. The 
effect of the mean flow in the wake refracting the waves is calculated by using 
a much simplified model. It is found that the waves diverging from the stern of a 
ship may differ considerably from the bow waves, in qualitative agreement with 
observation. 

1. Introduction 
Prominent components of the wave pattern generated by fine-form ships at  

low Froude numbers are the waves that diverge from the bow and stern. It has 
often been remarked that the stern waves are much smaller than the bow waves. 
The usual theory, linearized potential flow past a thin ship, indicates that the 
bow and stern waves should be of comparable size. It has been suggested, several 
times, that this discrepancy is in some way due to the boundary layer and wake 
of the ship. Gadd (1969), in a recent account of ship wave-making theory which 
includes comparison with experiments on models, shows how waves generated by 
a ship may be divided into bow and stern waves, but is only able to follow this up 
by introducing an empirical reducing factor for the stern waves. 

Tatinclaux (1970) has considered the effect of an ‘inviscid’ wake behind an 
ogive. The wake velocities were assumed to be sufficiently small so that the 
problem could be linearized. Even so, for some Froude numbers, the effect is quite 
appreciable. In  the example he gives, with a maximum wake velocity 1 / l o r  of the 
forward velocity the wave-making resistance is from 10 % larger to 35 % smaller 
than for irrotational flow. (The aspect ratio of the ogive in the examples is not 
given.) 

There are several different ways in which the wake may, and probably does, 
affect the waves but only one is considered here. If the waves are taken to be 
generated at  the ship they must pass through the boundary layer and wake to the 
otherwise undisturbed water outside. The particular effect considered is the 
refraction of waves by the mean flow of the wake. This is shown to give a pattern 
of diverging waves differing from the Kelvin ship wave pattern, for a sufficiently 
strong wake. 

The problem is idealized by considering a wave-making source moving with 
uniform velocity in the middle of a wake. The source represents the stern of a ship, 
the assumption being that the after-most part of the ship is more important for 
wave generation than the smoothly converging region in front of it. If the waves 
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generated diverge a t  an appreciable angle to the centre-line of the ship, then 
they will only pass through a small portion of the wake, so that we model this 
portion by extending the wake uniformly along its length. 

The method used is the simplest that shows the basic elements of the Kelvin 
ship wave pattern when used for still water. Waves of all frequencies are con- 
sidered to be generated by the source and the envelope of those waves that can 
remain steady relative to the source is found. Waves on this envelope are assumed 
to be dominant in the wave pattern. Except for very weak wakes they do not 
diverge at the Kelvin angle but at a smaller angle to the centre-line of the wake. 
The form of the waves radiated to infinity depends only on the maximum value 
of the velocity in the wake. The results are qualitative rather than quantitative; 
however, there is no restriction to small wake velocities. A limitation of the theory 
is that it is based on a short wavelength approximation. 

2. Theory 
Introduce a co-ordinate system with Oy along the centre of the wake, Oz 

vertically upwards and Ox to complete a right-handed set of axes. The wave- 
making source has velocity (0, V , O )  along Oy. The wake is represented by 8 
velocity distribution (0, U(x ,  z, ) ,  0) with 0 < U ( x ,  z )  < V and U = 0 outside a 
region - b < x < b, as indicated in figure 1 which represents the plane z = 0. 

Y 

FIGURE 1 

The propagation of short gravity waves on non-uniform currents such as this 
has been treated by Longuet-Higgins & Stewart (1961). They derive expressions 
for the change in the properties ofa wave train as it progresses across a flow where 
the length scale of the flow is much greater than a wavelength. More recently 
Smith (1970) has developed another approach to short surface waves which 
allows non-uniform flows to be included. Smith’s technique provides for a 
systematic expansion in inverse powers of the wave-number and so may be 
carried to a higher degree of approximation than Longuet-Higgins & Stewart’s 
results. The two methods agree to the first approximation, which is used here, and 
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Longuet-Higgins & Stewart give explicit expressions. If Smith’s technique is 
used it is clearly seen that it is only the velocity U(x) on x = 0 that affects the 
waves to this approximation. 

Consider the waves generated by the source after they have traversed the wake 
and are propagating in the still water outside. If they are to form part of a steady 
wave pattern moving with velocity V individual wave components must satisfy 
the relation 

c =  vsine, 

where c is their phase velocity and 0 the angle their direction of propagation makes 
with the x axis. 

Within the wake the wave energy is propagated at a velocity which is the vector 
sum of the group velocity, which is perpendicular to the wave crests, and the 
velocity U(x) of the water. If the subscript 1 is used to denote values of wave 
properties inside the wake and no subscript for the properties of the same waves 
outside the wake, then Longuet-Higgins & Stewart (1961, equations (8.9)) g’ ive us 

and 

If we introduce 

and use equation (1) these may be written more simply as 

W(X) = 1 - U(X)/V 

cl(z) = c/W(x), and sine,(x) = sin8/W2(z). 

For deep water the group velocity is equal to half the phase velocity, thus within 
the wake a wave packet has a velocity 

Now consider the source to have constant velocity V and suppose it is at the 
origin at t = 0. Then the waves emitted at time - t  when the source was at 
(0, - Vt )  which satisfy the relation (1)  have a locus in the x,y plane which is 
given by 

x = b+&VtsinOcos8- 

y = -Yt++V7tsin28+ 

for that part of the locus outside the wake with x > b. Equations (3) are derived 
in an appendix, and an example of such a locus is given in figure 2. (For com- 
parison with the still water case, take b = 0.) 

The predominant part of the wave pattern is given by the envelope of these 
curves obtained for different values of t. This is most easily found by fist 
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eliminating t .  The resulting equation and its partial derivative with respect to 
6 then give us the envelope 

This curve could be determined by numerical integration for a particular W ( x )  
and the value of 8 at a point on the curve would give the direction of wave crests 
there. 

(xlb- 1) 
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FIGURE 2. Uniform wake: U = 0.12V, W4 = 0.6. The two vertical lines represent the wake 
boundary. A ,  locus of waves satisfying c = B sin and generated by the moving source 
at y/b = - 100; B, lines of constant phase; C, envelope of lines like A and B. 
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3. Results 
There is little value in performing detailed integrations of (4). The general 

features of the waves can be ascertained fairly simply. For example, if W(x) = W 
a constant for 1x1 < b the integration is trivial and 

Figure 2 shows this envelope for W4 = 0.6, i.e. U = 0.12V. 
The behaviour of these waves as they radiate towards infinity is easily found. 

For x, y in ( 5 )  to approach infinity the denominator on the right-hand side of each 
equation must approach zero. There are two possible ways in which they may 
happen, depending on the value of W .  

If W4 > Q then the denominator is zero if 

2-3sin28 = 0. (6) 

This is the same value of 0 as for the Kelvin ship wave pattern and corresponds to 
a ‘weak’ wake; W4 > 3 implies U < 0.1 V .  

The case W4 < 8 is of more interest since the denominators in ( 5 )  are then 
zero when sin2 0 = W4. 

This gives a smaller value of 6’ than for the Kelvin pattern. The envelope ( 5 )  has 
as its asymptotes the line 

(7) 

(8 )  
i + c o s 2 e  

sin e cos ex ,  y = -  

where 0 takes the value given by (7). These lines are at a smaller angle to the 
direction of motion than the corresponding lines of the Kelvin ship wave pattern. 
[It is easy to show that if a straight line of waves with crests at an angle 8 to the 
y axis is advancing in the y direction with velocity V and (1) is satisfied then (8) 
is the equation of such a line.] The total range of 0 is not great since at  x = b, 
sin2 8 = 8 W4 so the line of the diverging waves is close to a straight line, as may 
be seen in figure 2. 

Returning to the general case, equations (a), the behaviour of waves a t  infinity 
is again easy to see. For a ‘weak’ wake, that is, W ( x )  always > 8, we have 
(6) again. For a ‘stronger’ wake, where the minimum value of W4(x) < Q the 
integral will diverge unless 

sin2 8 < min { W4(x)}, (9) 

giving us the value of B for x, y --f co. The asymptotes to the envelope will again 
be given by (8). It is interesting that the behaviour of the wave envelope at 
infinity is governed by the maximum velocity in the wake (i.e. minimum of W ( x ) )  
in this model theory, and not by any other property of the wake. 

In  the latter case of a ‘strong’ wake the wavelength of the waves may be 
considerably shorter than for a ‘weak ’wake, so that the short wave approach used 
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here is more likely to be relevant. The variation of wavelength of the waves at  
great distances with UI V is given in figure 3 which, for example, shows the wave- 
length to be reduced by half for Ul V = 0.25. This also means that the amplitude 
of the waves is likely to be less in about the same proportion since a wave train 
can only have a certain maximum steepness without breaking, and hence the 
energy and momentum radiated in the waves from the stern of a vessel is likely 
to be considerably less than in the bow waves. The smaller angle of divergence 
also implies a reduced transport of momentum away from the ship. 

0.8 

+ 0.6 

0.2 

0 

u/v+ 
FIGURE 3. Wavelength of diverging waves as x, y + co for different wakes. A, = wavelength 

with no wake, U = maximum velocity of wake. 

The relevance of this theory to a ship or model depends mainly on the width 
and structure of the wake compared with the wavelength of the waves being 
generated. If the width of the wake is less than a wavelength it is unlikely that 
this approach would yield any benefit. However, by measuring the stern waves 
it would be possible to evaluate a 'wake parameter', corresponding to the 
maximum value of U(x) /V  in this theory, that may be of some use. 

4. Comparison with observations 
There are few observations on the pattern of ship waves and few measurements 

of wake velocities. In  some photographs of ships the stern waves may be seen 
clearly to have smaller values of I9 than the bow waves. 

The pattern of ship waves for a range of ship models has been measured by 
Kajitani (1963, 1965). Several diagrams show diverging stern waves clearly and 
for most of them I9 is clearly less than it is for the bow waves. For example, model 
S-201 at Froude number 0.267 (Kajitani 1965, figure 29, page 105) has I9 = 30" 
and the line of wave crests at 13" to the line of motion for the stern waves, though 
the corresponding figures for the bow waves are 44' and 20°, which is not in 
agreement with the Kelvin ship wave values. It is not possible to measure these 
angles very accurately or very far from the model; however, the difference 
between the two sets of waves is clear. The above value for 6 = 30" corresponds to 
a minimum value of W 2 ( x )  of 0.5 or to a maximum value of U of 0.3V. 

The only measurement of wake velocities both near the surface and close to the 
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stern of the model that I have been able to find are by Hogben (1964) for a 
‘ mathematical ’ model with parabolic waterlines and sections. The measurements 
were made 1 in. (2.5 cm) below the surface at the stern of the model which was 
20ft (6 m) long and 2 f t  (60 cm) wide. Measurements are given for Froude 
numbers of 0.156 and 0.315. They show maximum values of U[V of 0.84 and 
0.73 respectively. However the width of the wake is small, U/V > 0.1 for about 
5 in. (13 em) each side of the centre-line. The wavelengths of diverging waves in 
the corresponding Kelvin ship wave patterns are 8 in. (20 em) and 15 in. (38 cm) 
respectively. Thus if this theory provides any guide at all in this case the waves 
are likely to correspond to quite a small value of the ‘wake parameter’ UlV. 

5. Conclusion 
The approach used here is too simple to  apply directly to a ship. However, it  

does show that the shear flow around the stern of a vessel can have a substantial 
qualitative effect on the waves generated. The form of wave pattern predicted is 
in agreement with observation. From observation of the diverging stern waves 
it is possible to work out a corresponding value of maximum V /  V in the  wake. 
It would be interesting to have measurements of both wave patterns and wake 
profiles to see how this value might compare with actual values of U / V .  

I wish to thank Dr G. E. Gadd for stimulating discussions a t  the National 
Physical Laboratory, Ship Division. 

Appendix 

then 
If T is the time taken for a wave packet to reach the edge of the wake at  x = b, 

T = /I:obdt = / : g d x  

(A 1) 
= j b  2 W3(x) ax 

V sin 8[ W4(x) - sin2 8]+ 
from expression (2). 

the y direction is 
Similarly the distance the wave packet has travelled relative to still water in 

2 W3(x)  dx 
V sin 8[ W4(x) - sin2 814 

For t > T the wave packet has velocity ($V sin 8 cos 8, $V sin2 0) and thus its 
position at t = 0 when it was emitted at (0, - Vt)  at time -t is 

(A 3) I x = b++V(t-T)sin8 C O S ~ ,  
y = Y b -  Vt + $V(t - T )  sin2 8. 

Substitution of (A 1) and (A 2) then gives equations (3). 
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Lines of constant phase are those for which 

x = k . r - d  

is constant. By using c = VsinB = cr/k = g/a we find 

(cos + sin BY - sin ~ t ) .  
= V2 sin2 6 

Substitution from equations (3) for x and y leads to a relation between t ,  B and x 
which together with equations (3) has been used to calculate lines of constant 
phase such as that shown in figure 2, where x = - 150gb/ V z .  
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